
7 D-At9l 611 ADA (TRADE NAME) COMPILER VALIDATION SUMMARY
REPORT 1/1

SILICON GRAPHICS INC (U) INFORMATION SYSTEMS AND
TECHNOLOGY CENTER W-P AFB OH ADA VALI 22 APR 88

UNCLASSIFIED AVF-VSR-72 0987 F/G 12/5 NLEl7lllllllllE
lllhlllllllllE
EIIIIIIIIIIIIE
I

LW

L
120

.L.

w w W ~w -W w ..W .w w - w w W.

"DE FILE COPYv,

AVF Control Number: AVF-VSR-72.0987
87-03-09-SIL

O1

Ada® COMPILER
VALIDATION SUMMARY REPORT:

Silicon Graphics, Inc.
SADS - Silicon Graphics Ada Development System, Version 5.41

IRIS 3000/3100 Series Workstation

Completion of On-Site Testing:
April 22, 1987

Prepared By:
Ada Validation Facility

ASD/SCOL DI~DTIC
Wright-Patterson AFB OH 45433-6503 ELECTE

S MAR 2 8 1988

Prepared For: CI

Ada Joint Program Office H
United States Department of Defense

Washington, D.C.

®Ada is a registered trademark of the United States Government

(Ada Joint Program Office).

D a8butin Unm"

UNCLASSIFIED
SECURITY CLASSIFICATION OF THIS PAGE (When Data Entered)

REPORT DOCUMENTATION PAGE READ INSTRUCTONS
BEFORE COMPLETEING FORM

1. REPORT NUMBER 17. GOVT ACCESSION NO. 3. RECIPIENT'S CATALOG NUMBER

4. TITLE (andSubtitle) 5. TYPE OF REPORT & PERIOD COVERED
Ada Compiler Validation Summary Report: 22 April '87 to 22 April '88
Silicon Graphics, Inc. SADS-Silicon Graphics
Ada Development System, Ver. 5.41 IRIS 6. PERFORMING ORG. REPORT NUMBER
3000/3100 Series Workstation
7 AUTHR(sl 8. CONTRACT OR GRANT NUMBER(s)

U W t-atterson AFB OH 45433-6503

9. PERFORMING ORGANIZATION AND ADDRESS 10. PROGRAM ELEMENT, PROJECT, TASK
Wright-Patterson AFB OH 45433-6503 AREA & WORK UNIT NUMBERS

=.j

It. CONTROLLING OFFICE NAME AND ADDRESS 12. REPORT DATE
Ada Joint Program Office 22 April 1987
United States De artment of Defense 1. NUMBER OF FAbLS
Washington, DC 20301-3081ASD/SIOL 39 p.

14. MONITORING AGENCY NAME & ADDRESS(If different from Controlling Office) 15. SECURITY CLASS (of this report)

Wright-Patterson AFB OH 45433-6503. UNCLASSIFIED
15a. RkaFICATION/OOWNGRADING

~N/A
16. DISTRIBUTION STATEMENT (ofthisReport)

Approved for public release; distribution unlimited.

17. DISTRIBUTION STATEMENT (of the abstract entered in Block 20. If different from Report)

UNCLASSIFIED

18. SUPPLEMENTARY NOTES

19. KEYWORDS (Continue on reverse side if necessary and identify by block number)

Ada Programming language, Ada Compiler Validation Summary Report, Ada
Compiler Validation Capability, ACVC, Validation Testing, Ada
Validation Office, AVO, Ada Validation Facility, AVF, ANSI/MIL-STD-
1815A, Ada Joint Program Office, AJPO

20. ABSTRACT (Continue on reverse side if necessary and identify by block number)

See Attached.

DO 'u' 1473 EDITION OF I NOV 65 IS OBSOLETE

I 1 JAN 73 S/N 0102-LF-014-6601 UNCLASSIFIED
SECURITY CLASSIFICATION OF THIS PAGE (When Data Entered)

+ Plc TSfr ee+

MAM

Ada& Compiler Validation Summary Report:

.: Compiler Name: SADS - Silicon Graphics Ada Development System, Version 5.41

Host: Target:
IRIS 3000/3100 Series Workstation IRIS 3000/3100 Series Workstation
under UNIX System V, under UNIX System V,
GL2-W3.5 GL2-W3.5

Testing Comnpleted April 22, 1987, Using ACVC 1.8

Thts repoi't has been reviewed and is approved.

Ada Validation Facility

Steven P. Wilson
ASD/SCOL
Wright-Patterson AFB OH -.45433-6503

%~

LAda Validation Organization
,4 Dr. John F. Kramer

Institute for Defense Analyses Acoession For

Alexandria VA NTIS GRA&I
DTIC TAB [
ijnanloufced [
Just!lict- on

pY

Ada 4 6int Program Office DLstrbUYtol__
Virginia L. Castor

_.....Director Avae111t '- '
Department of Defense Avail &1;/r
Washington DC Dist Special

®Ada is a registered trademark of the United States Government

(Ada Joint Program Office).

EXECUTIVE SUMMARY

This Validation Summary Report (VSR) summarizes the results and conclusions
of validation testing performed on the SADS - Silicon Graphics Ada®
Development System, Version 5.)!1, using Version 1.8 of the Ada Compiler
Validation Capability (ACVC). The SADS - Silicon Graphics Ada Development
System is hosted on an IRIS 3000/3100 Series Workstation operating under
UNIX System V, GL2-W3.5. Programs processed by this compiler may be
executed on an IRIS 3000/3100 Series Workstation operating under UNIX
System V, GL2-W3.5.

On-site testing was performed April 21, 1987, through April 22, 1987, at
2011 Stierlin Road, Mountain View CA 94043, under the direction of the Ada
Validation Facility (AVF), according to Ada Validation Organization (AVO)
policies and procedures. The AVF identified 2210 of the 2399 tests in ACVC
Version 1.8 to be processed during on-site testing of the compiler. The 19
tests withdrawn at the time of validation testing, as well as the 170
executable tests that make use of floating-point precision exceeding that

--'- supported by the implementation, were not processed. After the 2210 tests
were processed, results for Class A, C, D, and E tests were examined for
correct execution. Compilation listings for Class B tests were analyzed
for correct diagnosis of syntax and semantic errors. Compilation and link
results of Class L tests were analyzed for correct detection of errors.
There were eight of the processed tests determined to be inapplicable. The
remaining 2202 tests were passed.

The results of validation are summarized in the following table:

RESULT CHAPTER TOTAL
_2 3 4 5 6 7 8 9 10 11 12 14

Passed 102 252 334 244 161 97 138 261 130 32 218 233 2202

Failed 0 0 0 0 0 0 0 0 0 0 0 0 0

Inapplicable 14 73 86 3 0 0 1 1 0 0 0 0 178

Withdrawn 0 5 5 0 0 1 1 2 4 0 1 0 19

TOTAL 116 330 425 247 161 98 140 264 134 32 219 233 2399

The AVF concludes that these results demonstrate acceptable conformity to
ANSI/MIL-STD-1815A Ada.

"O Ada is a registered trademark of the United States Government
(Ada Joint Pcrgram Office).

i

TABLE OF CONTENTS

CHAPTER 1 INTRODUCTION

1.1 PURPOSE OF THIS VALIDATION SUMMARY REPORT 1-2
1.2 USE OF THIS VALIDATION SUMMARY REPORT 1-2
1.3 REFERENCES 1-3
1.4 DEFINITION OF TERMS. 1-3
1.5 ACVC TEST CLASSES. 1-4

*CHAPTER 2 CONFIGURATION INFuRMATION

2.1 CONFIGURATION TESTED 2-1
2.2 IMPLEMENTATION CHARACTERISTICS. 2-2

aCHAPTER 3 TEST INFORMATION

3.1 TEST RESULTS.3-1
3.2 SUMMARY OF TEST RESULTS BY CLASS. 3-1
3.3 SUMMARY OF TEST RESULTS BY CHAPTER. 3-2
3.4 WITHDRAWN TESTS3-2

3.5 INAPPLICABLE TESTS3-2

3.6 SPLIT TESTS. 3-3
3.7 ADDITIONAL TESTING INFORMATION 3-4
3.7.1 Prevalidation3-4
3.7.2 Test Method. 3-4
3.7.3 Test Site. 3-4

APPENDIX A DECLARATION OF CONFORMANCE

APPENDIX B APPENDIX F OF THE Ada STANDARD

B.1 IMPLEMENTATION-DEPENDENT PRAGMAS. B-2
*B.1.1 SHARE BODY Pragma. B-2

B.1.2 EXTERNAL NAME Praga.... B-2
B.1.3 INTERFACE -OBJECT PragmaB-2
B.1.4 IMPLICITCODE Pragma.. B-3
B.2 IMPLEMENTATION OF PREDEFINED PRAGMAS. B-3
B.2.1 CONTROLLED. . . 4 B - 3
B.2.2 ELABORATE. B-3
B.2.3 INLINE. B-3
B.2.4 INTERFACE. B-3
B.2.5 LIST............ B-3
B.2.6 MEMORY SIZE........ . .. B-4
B .2.7 OPTIMIZE 4
B .2.8 PACKB-4

B .2.9 PAGE B-4
B .2.10 PRIORITY B-4
B.2.11 SHARED B-4l
B.2.12 STORAGE-UNIT B-4

B.2.13 SUPPRESS. B-5
B.2.14I SYSTEMNAMEB-5

B.3 IMPLEMENTATION-DEPENDENT ATTRIBUTES B-5
B-3.1 PRFB-5

B.4 SPECIFICATION OF PACKAGE SYSTEM B-5
B.5 RESTRICTIONS ON REPRESENTATION CLAUSES.o......B-7
B.5.1 Pragma PACK B-7
B.5.2 Size Specification B-7
Bo5.3 Record Representation ClausesB-7
8.5.4 Address ClausesB-7

B-5.5 Interrupts B-7
B-5.6 Representation Attributes B-7
B-5.7 Machine Code InsertionsB-7

B. 6 CONVENTIONS FOR IMPLEMENTATION -GENERATED NAMES .. B-8
B.7 INTERPRETATION OF EXPRESSIONS IN ADDRESS CLAUSES . B-8
B.8 RESTRICTIONS ON UNCHECKED CONVERSIONS B-9
B.9 RESTRICTIONS ON UNCHECKED DEALLOCATIONS B-9
B.10 IMPLEMENTATION CHARACTERISTICS OF INPUT-OUTPUT

PACKAGES.............. B-9
B.11 IMPLEMENTATION LIMITS B-9
Bo11.1 Line Length B-9
B.1i.2 Record And Array SizesB-10

B.11.3 Default Stack Size For Tasks B-10
B.11.~4 Default Collection SizeB-l0

B.11.5 Limit On Declared Objects...........B-10

APPENDIX C TEST PARAMETERS

APPENDIX D WITHDRAWN TESTS

CHAPTER 1

INTRODUCTION

This Validation Summary Report .-(-YSR) describes the extent to which a
specific Ada compiler conforms to the Ada Standard, ANSI/MIL-STD-1815A.
This report explains all technical terms used within it and thoroughly

C. reports the results of testing this compiler using the Ada Compiler
Validation Capability (ACVC). An Ada compiler must be implemented

according to the Ada Standard, and any implementation-dependent features
must conform to the requirements of the Ada Standard. The Ada Standard

must be implemented in its entirety, and nothing can be implemented that is
not in the Standard.

Even though all validated Ada compilers conform to the Ada Standard, it
must be understood that some differences do exist between implementations.
The Ada Standard permits some implementation dependencies--for example, the
maximum length of identifiers or the maximum values of integer types.
Other differences between compilers result from characteristics of
particular operating systems, hardware, or implementation strategies. All
of the dependencies observed during the process of testing this compiler

are given in this report.

The information in this report is derived from the test results produced
during validation testing. The validation process includes submitting a

suite of standardized tests, the ACVC, as inputs to an Ada compiler and
evaluating the results..fThe purpose of validating is to ensure conformity

*of the compiler to the Ada '3tandard by testing that the compiler properly
implements legal language constructs and that it identifies and rejects
illegal language constructs. The testing also identifies behavior that is
implementation dependent but permitted by the Ada Standard. Six classes of
tests are used. These tests are designed to perform checks at compile
time, at link time, and during execution.

NV

I-1

0_-I

INTRODUCTION

1.1 PURPOSE OF THIS VALIDATION SUMMARY REPORT

This VSR documents the results of the validation testing performed on an
Ada compiler. Testing was carried out for the following purposes:

" To attempt to identify any language constructs supported by the
compiler that do not conform to the Ada Standard

. To attempt to identify any unsuppc-ted language constructs
,equired by tht 'da Standard

- To determine that the implementation-dependent behavior is allowed
by the Ada Standard

Testing of this compiler was conducted by SofTech, Inc., under the
direction of the AVF according to policies and procedures established by
the Ada Validation Organization (AVO). On-site testing was conducted from
April 21, 1987, through April 22, 1987, at 2011 Stierlin Road, Mountain
View CA 94043.

" 1.2 USE OF THIS VALIDATION SUMMARY REPORT

Consistent with the national laws of the originating country, the AVO may
make full and free public disclosure of this report. In the United States,
this is provided in accordance with the "Freedom of Information Act" (5
U.S.C. #552). The results of this validation apply only to the computers,
operating systems, and compiler versions identified in this report.

The organizations represented on the signature page of this report do not
represent or warrant that all statements set forth in this report are
accurate and complete, or that the subject compiler has no nonconformities
to the Ada Standard other than those presented. Copies of this report are
available to the public from:

S.,

Ada Information Clearinghouse
Ada Joint Program Office
OUSDRE
The Pentagon, Rm 3D-139 (Fern Street)
Washington DC 20301-3081

or from:S.
Ada Validation Facility

a.. ASD/SCOL
Wright-Patterson AFB OH 45433-6503

1-2

0~ M

INTRODUCTION

Questions regarding this report or the validation test results should be
directed to the AVF listed above or to:

Ada Validation Organization
Institute for Defense Analyses
1801 North Beauregard Street
Alexandria VA 22311

1.3 REFERENCES
Ii

1. Reference Manual for the Ada Programming Language,
ANSI/MIL-STD-1815A, February 1983.

2. Ada Validation Organization: Procedures and Guidelines, Ada Joint
Program Office, 1 January 1987.

SO3. Ada Compiler Validation Capability Implementers' Guide, SofTech,
Inc., December 1984.

1.4 DEFINITION OF TERMS

ACVC The Ada Compiler Validation Capability. A set of programs
that evaluates the conformity of a compiler to the Ada
language specification, ANSI/MIL-STD-1815A.

Ada Standard ANSI/MIL-STD-1815A, February 1983.

U Applicant The agency requesting validation.

AVF The Ada Validation Facility. In the context of this report,
the AVF is responsible for conducting compiler validations
according to established policies and procedures.

AVO The Ada Validation Organization. In the context of this
report, the AVO is responsible for setting procedures for
compiler validations.

S.
Compiler A processor for the Ada language. In the context of this

report, a compiler is any language processor, including
cross-compilers, translators, and interpreters.

Failed test A test for which the compiler generates a result that
demonstrates nonconformity to the Ada Standard.

Host The computer on which the compiler resides.

1-3

% % INTRODUCTION

Inapplicable A test that uses features of the language that a compiler is
test not required to support or may legitimately support in a way

other than the one expected by the test.

Passed test A test for which a compiler generates the expected result.

STrget The computer for which a compiler generates code.

A program that checks a compiler's conformity regarding a
particular feature or features to the Ada Standard. In the
context of this report, the term is used to designate a
single test, which may comprise one or more files.

Witl : wn A test found to be incorrect and not used to check conformity
tes to the Ada language specification. A test may be incorrect

because it has an invalid test objective, fails to meet its
test objective, or contains illegal or erroneous use of the
language.

1.5 ACVC TEST CLASSES

Conformity to the Ada Standard is measured using the ACVC. The ACVC
- contains both legal and illegal Ada programs structured into six test

classes: A, B, C, D, E, and L. The first letter of a test name identifies
the class to which it belongs. Class A, C, D, and E tests are executable,
and special program units are used to report their results during
execution. Class B tests are expected to produce compilation errors.

Class L tests are expected to produce link errors.

Class A tests check that legal Ada programs can be successfully compiled
and executed. However, no checks are performed during execution to see if
the test objective has been met. For example, a Class A test checks that
reserved worJs of another language (other than those already reserved in
the Ada language) are not treated as reserved words by an Ada compiler. A4. Class A test is passed if no errors are detected at compile time and the

program executes to produce a PASSED message.

Class B tests check that a compiler detects illegal language usage. Class
B tests are not executable. Each test in this class is compiled and the
resulting compilation listing is examined to verify that every syntax or
semantic error in the test is detected. A Class B test is passed if every
illegal construct that it contains is detected by the compiler.

IClass C tests check that legal Ada programs can be correctly compiled and
executed. Each Class C test is self-checking and produces a PASSED,
FAILED, or NOT APPLICABLE message indicating the result when it is

pv,, executed.

Class D tests check the compilation and execution capacities of a compiler.
Since there are no capacity requirements placed on a compiler by the Ada
Standard for some parameters--for example, the number of identifiers

1-4

-0 1

INTRODUCTION

permitted in a compilation or the number of units in a library--a compiler
may refuse to compile a Class D test and still be a conforming compiler.
Therefore, if a Class D test fails to compile because the capacity of the
compiler is exceeded, the test is classified as inapplicable. If a Class D
test compiles successfully, it is self-checking and produces a PASSED or
FAILED message during execution.

p,

Each Class E test is self-checking and produces a NOT APPLICABLE, PASSED,
or FAILED message when it is compiled and executed. However, the Ada
Standard permits an implementation to reject programs containing some
features addressed by Class E tests during compilation. Therefore, a Class
E test is passed by a compiler if it is compiled successfully and executes
to produce a PASSED message, or if it is rejected by the compiler for an
allowable reason.

Class L tests check that incomplete or illegal Ada programs involving
multiple, separately compiled units are detected and not allowed to
execute. Class L tests are compiled separately and execution is attempted.
A Class L test passes if it is rejected at link time--that is, an attempt
to execute the main program must generate an error message before any
declarations in the main program or any units referenced by the main

-. program are elaborated.

Two library units, the package REPORT and the procedure CHECK FILE, support
the self-checking features of the executable tests. The package REPORT
provides the mechanism by which executable tests report PASSED, FAILED, or
NOT APPLICABLE results. It also provides a set of identity functions used
to defeat some compiler optimizations allowed by the Ada Standard that
would circumvent a test objective. The procedure CHECK FILE is used to
check the contents of text files written by some of the Class C tests for

.7 chapter 14 of the Ada Standard. The operation of these units is checked by
a set of executable tests. These tests produce messages that are examined
to verify that the units are operating correctly. If these units are not
operating correctly, then the validation is not attempted.

"• '* The text of the tests in the ACVC follow conventions that are intended to
ensure that the tests are reasonably portable without modification. For
example, the tests make use of only the basic set of 55 characters, contain

e lines with a maximum length of 72 characters, use small numeric values, and
place features that may not be supported by all implementations in separate
tests. However, some tests contain values that require the test to be
customized according to implementation-specific values--for example, an
illegal file name. A list of the values used for this validation is
provided in Appendix C.

A compiler must correctly process each of the tests in the suite and
demonstrate conformity to the Ada St-andard by either meeting the pass
criteria given for the test or by showing that the test is inapplicable to
the implementation. The applicability of a test to an implementation is
considered each time the implementation is validated. A test that is
inapplicable for one validation is not necessarily inapplicable for a
subsequent validation.

1-5

OA'
N %j

INTRODUCTION

Any test that was determined to contain an illegal language construct or an
erroneous language construct is withdrawn from the ACVC and, therefore, is
not used in testing a compiler. The tests withdrawn at the time of
validation are given in Appendix D.

I

1-6

I

11 Z d i i 11

3

CHAPTER 2

CONFIGURATION INFORMATION

2.1 CONFIGURATION TESTED

p. The candidate compilation system for this validation was tested under the
following configuration:

Compiler: SADS - Silicon Graphics Ada Development System, Version
5.41

ACVC Version: 1.8

Certificate Number: 870422W1.08050

V Host Computer:

Machine: IRIS 3000/3100 Series Workstation

Operating System: UNIX System V
GL2-W3.5

* Memory Size: 4 megabytes

* Target Computer:

Machine: IRIS 3000/3100 Series Workstation

Operating System: UNIX System V
GL2-W3.5

Memory Size: 4 megabytes

2-1

01jj

CONFIGURATION INFORMATION

2.2 IMPLEMENTATION CHARACTERISTICS

One of the purposes of validating compilers is to determine the behavior
of a compiler in those areas of the Ada Standard that permit
implementations to differ. Class D and E tests specifically check for
such implementation differences. However, tests in other classes also
characterize an implementation. This compiler is characterized by the
following interpretations of the Ada Standard:

. Capacities.

The compiler correctly processes tests containing loop statements
nested to 65 levels, block statements nested to 65 levels, and
recursive procedures separately compiled as subunits nested to 17
levels. It correctly processes a compilation containing 723
variables in the same declarative part. (See tests D55A03A..H (8
tests), D56001B, D64005E..G (3 tests), and D29002K.)

" Universal integer calculations.

* An implementation is allowed to reject universal integer

calculations having values that exceed SYSTEM.MAXINT. This
V implementation does not reject such calculations and processes them

correctly. (See tests D4AO02A, D4A002B, D4AO04A, and D4AO04B.)

• Predefined types.
,d.

This implementation supports the additional predefined types
SHORTINTEGER, SHORTFLOAT, and TINY INTEGER in the package
STANDARD. (See tests B86001C and B86001D.)

Based literals.

An implementation is allowed to reject a based literal with a value
exceeding SYSTEM.MAXINT during compilation, or it may raise
NUMERIC ERROR or CONSTRAINTERROR during execution. This
implementation raises CONSTRAINTERROR during execution. (See test
E24101A.)

Array types.

An implementation is allowed to raise NUMERICERROR or

CONSTRAINT ERROR for an array having a 'LENGTH that exceeds
STANDARD.INTEGER'LAST and/or SYSTEM.MAX INT.

A packed BOOLEAN array having a 'LENGTH exceeding INTEGER'LAST
raises NUMERIC-ERROR when the array type is declared. (See test
C52103X.)

2-2

CONFIGURATION INFORMATION

* A packed two-dimensional BOOLEAN array with more than INTEGER'LAST
components raises NUMERICERROR when the array type is declared.
(See test C52104Y.)

'I A null array with one dimension of length greater than INTEGER'LAST
may raise NUMERICERROR or CONSTRAINTERROR either when declared or
assigned. Alternatively, an implementation may accept the
declaration. However, lengths must match in array slice
assignments. 'r:ts implementation raises NUMERICERROR when the
array type is declared. (See test E52103Y.)

In assigning one-dimensional array types, the expression appears to
be evaluated in its entirety before CONSTRAINTERROR is raised when
checking whether the expression's subtype is compatible with the
target's subtype. In assigning two-dimensional array types, the
expression appears to be evaluated in its entirety before
CONSTRAINTERROR is raised when checking whether the expression's

subtype is compatible with the target's subtype. (See test
C52013A.)

0

Discriminated types.

During compilation, an implementation is allowed to either accept or
reject an incomplete type with discriminants that is used in an
access type definition with a compatible discriminant constraint.
This implementation accepts such subtype indications. (See test
E38104A.)

In assigning record types with discriminants, the expression appears
to be evaluated in its entirety before CONSTRAINT ERROR is raised
when checking whether the expression's subtype is compatible with
the target's subtype. (See test C52013A.)

Aggregates.

In the evaluation of a multi-dimensional aggregate, all choices
appear to be evaluated before checking against the index type. (See
tests C43207A and C43207B.)

In the evaluation of an aggregate containing subaggregates, all
choices are evaluated before being checked for identical bounds.
(See test E43212B.)

All choices are evaluated before CONSTRAINTERROR is raised if a
bound in a nonnull range of a nonnull aggregate does not belong to
an index subtype. (See test E43211B.)

2-3

RRzkU%,

CONFIGURATION INFORMATION

Functions.

An implementation may allow the declaration of a parameterless
function and an enumeration literal having the same profile in the
same immediate scope, or it may reject the function declaration. If

S..[it accepts the function declaration, the use of the enumeration
literal's identifier denotes the function. This implementation
rejects the declaration. (See test E66001D.)

Representation clauses.

The Ada Standard does not require an implementation to support
representation clauses. If a representation clause is not
3upported, then the implementation must reject it. While the
operation of representation clauses is not checked by Version 1.8 of
the ACVC, they are used in testing other language features. This
implementation accepts 'SIZE and 'STORAGESIZE for tasks,
'STORAGESIZE for collections, and 'SMALL clauses. Enumeration
representation clauses, including those that specify noncontiguous
values, appear to be supported. (See tests C55B16A, C87B62A,
C87B62B, C87B62C, and BC1002A.)

. Pragmas.

The pragma INLINE is supported for procedures and for functions.
(See tests CA3004E and CA3004F.)

" Input/output.

The package SEQUENTIAL_10 can be instantiated with unconstrained
array types and record types with discriminants. The package
DIRECT 10 can be instantiated with unconstrained array types and
record- types with discriminants without defaults. (See tests
AE2101C, AE2101H, CE2201D, CE2201E, and CE2401D.)

* An existing text file can be opened in OUT FILE mode, can be created
in OUT FILE mode, and can be created in INFILE mode. (See test
EE3102C7)

More than one internal file can be associated with each external
file for text I/O for both reading and writing. (See tests

6., CE3111A..E (5 tests).)

More than one internal file can be associated with each external
file for sequential I/O for both reading and writing. (See tests
CE2107A..F (6 tests).)

More than one internal file can be associated with each external
file for direct I/O for both reading and writing. (See tests
CE2107A..F (6 tests).)

2-4

et%

CONFIGURATION INFORMATION

An external file associated with more than one internal file can be
deleted. (See test CE2110B.)

Temporary sequential files and direct files are given names.
Temporary files given names are deleted when they are closed. (See
tests CE2108A and CE2108C.)

Generi's.

Generic subprogram declarations and bodies can be compiled in
separate compilations. (See test CA2009F.)

Generic package declarations and bodies can be compiled in separate
compilations. (See tests CA2009C and BC3205D.)

I.2

%.5

2-5

O

CHAPTER 3

V ,TEST INFORMATION

3.1 TEST RESULTS

Version 1.8 of the ACVC contains 2399 tests. When validation testing of
SADS - Silicon Graphics Ada Development System was performed, 19 tests had
been withdrawn. The remaining 2380 tests were potentially applicable to

this validation. The AVF determined that 178 tests were inapplicable to
this implementation, and that the 2202 applicable tests were passed by the
implementation.

The AVF concludes that the testing results demonstrate acceptable
conformity to the Ada Standard.

3.2 SUMMARY OF TEST RESULTS BY CLASS

RESULT TEST CLASS TOTAL
A B C D E L

Passed 69 865 1192 17 13 46 2202

Failed 0 0 0 0 0 0 0

Inapplicable 0 2 176 0 0 0 178

Withdrawn 0 7 12 0 0 0 19

TOTAL 69 874 1380 17 13 46 2399

3-1

0

TEST INFORMATION

3.3 SUMMARY OF TEST RESULTS BY CHAPTER

RESULT CHAPTER TOTAL
Pasd2 _ 4 5 6 7 8 9 10 11 12 14

Passed 102 252 334 244 161 97 138 261 130 32 218 233 2202

Failed 0 0 0 0 0 0 0 0 0 0 0 0 0

Inapplicable 14 73 86 3 0 0 1 1 0 0 0 0 178

Withdrawn 0 5 5 0 0 1 1 2 4 0 1 0 19

TOTAL 116 330 425 247 161 98 140 264 134 32 219 233 2399

3.4 WITHDRAWN TESTS

The following 19 tests were withdrawn from ACVC Version 1.8 at the time of

this validation:
-.

C32114A C41404A B74101B
B33203C B45116A C87B50A
C34018A C48008A C92005A
C35904A B49006A C940ACA
B37401A B4AO10C CA3005A..D (4 tests)

BC3204C

See Appendix D for the reason that each of these tests was withdrawn.

3.5 INAPPLICABLE TESTS

Some tests do not apply to all compilers because they make use of features
that a compiler is not required by the Ada Standard to support. Others may
depend on the result of another test that is either inapplicable or
withdrawn. The applicability of a test to an implementation is considered
each time the implementation is attempted. A test that is inapplicable for
one validation is not necessarily inapplicable for a subsequent attempt.
For this validation attempt, 178 tests were inapplicable for the reasons

9.9 indicated:

C34001E, B52004D, B55B09C, and C55BO7A use LONGINTEGER which is
inot supported by this compiler.

C34001G and C35702B use LONGFLOAT which is not supported by this
compiler.

3-2
I%tV
9/

TEST INFORMATION

. C86001F redefines package SYSTEM, but TEXT_10 is made obsolete by
this new definition in this implementation and the test cannot be
executed since the package REPORT is dependent on the package
TEXTIO.

. C96005B checks implementations for which the smallest and largest
values in type DURATION are different from the smallest and
largest values in DURATION's base type. This is not the case for
this implementation.

. The following 170 tests require a floating-point accuracy that
exceeds the maximum of 15 supported by the implementation:

C24113L..Y (14 tests)
C35705L..Y (14 tests)
C35706L..Y (14 tests)
C35707L..Y (14 tests)
C35708L..Y (14 tests)

C35802L..Y (14 tests)
C45241L..Y (14 tests)
C45321L..Y (14 tests)
C45421L..Y (14 tests)
C45424L..Y (14 tests)
C45521L..Z (15 tests)
C45621L..Z (15 tests)

3.6 SPLIT TESTS

If one or more errors do not appear to have been detected in a Class B test
because of compiler error recovery, then the test is split into a set of
smaller tests that contain the undetected errors. These splits are then

compiled and examined. The splitting process continues until all errors
are detected by the compiler or until there is exactly one error per split.
Any Class A, Class C, or Class E test that cannot be compiled and executed
because of its size is split into a set of smaller subtests that can be
processed.

Splits were required for 19 Class B tests:

*.,

B24204A B37201A B67001B
B24204B B38008A B67001C
B24204C B41202A B67001D
B2AOO3A B44001A B91003B

_j B2AOO3B B64001A B95001A
B2AO03C B67001A B97102A
B33301A

3-3

*TEST INFORMATION

3.7 ADDITIONAL TESTING INFORMATION

3.7.1 Prevalidation

Prior to validation, a set of test results for ACVC Version 1.8 produced by
the SADS - Silicon Graphics Ada Development System was submitted to the AVF
by the applicant for review. Analysis of these results demonstrated that
the compiler successfully passed all dpplicable tests, and that the
compiler exhibited the expected behavior, on all inapplicable tests.

3.7.2 Test Method

Testing of the SADS - Silicon Graphics Ada Development System using ACVC
Version 1.8 was conducted on-site by a validation team from the AVF. The
configuration consisted of an IRIS 3000/3100 Series Workstation operating
under UNIX System V, GL2-W3.5.

A magnetic tape containing all tests except for withdrawn tests was taken
*on-site by the validation team for processing. Tests that make use of

implementation-specific values were customized before being written to the
magnetic tape. Tests requiring splits during the prevalidation testing
were included in their split form on the magnetic tape.

The contents of the magnetic tape were not loaded directly onto the host
computer, but were loaded onto a VAX-11/780 running under UNIX System BSD
4.3. The test files were then transferred to the host computer via a local
area network running TCP/IP. After the test files were loaded to disk, the
full set of tests was compiled and linked on the IRIS 3000/3100 Series

' Workstation, and all executable tests were run. Results were printed.

The compiler was tested using command scripts provided by Silicon Graphics,
Inc. and reviewed by the validation team.

Tests were compiled, linked, and executed (as appropriate) using a single

host computer. Test output, compilation listings, and job logs were
captured on magnetic tape and archived at the AVF. The listings examined
on-site by the validation team were also archived.

3.7.3 Test Site

The validation team arrived at 2011 Stierlin Road, Mountain View CA 94043
on April 21, 1987, and departed after testing was completed on April 22,
1987.

%3-

V

3-4
,I

APPENDIX A

DECLARATION OF CONFORMANCE

Silicon Graphics, Inc. has submitted the following
declaration of conformance concerning the SADS -
Silicon Graphics Ada Development System.

A-1

V..

DECLARATION OF COUFORHANCE

%4i C!!iler Implementor: Silicon Graphics, Inc.
Ada Validation Facility: ASD/SCOL, Wright-Patterson AFB, OH
Ada Compiler Validation Capability (ACVC) Version: 1.8

Base Configuration

Base Compiler Name: SADS - Silicon Graphics Ada Development System
Version: Version 5.41
Host Architecture ISA: IRIS 3000/3100 S.ries Workstation
OS&VER 1: UNIX System V, GL2-W3.5
Target Architecture ISA: IRIS 3000/3100 Series Workstation
OS&VER #: UNIX System V, GL2-W3.5

-mplementor' u Declaration

I, the undersigned, representing Silicon Graphics, Inc., have implemented
no deliberate extensions to the Ada Language Standard ANSI/MIL-STD-1815A in
the compiler(s) listed in this declaration. I declare that Silicon
Graphics, Inc. is the owner of record of the Ada language cmpiler(s)
listed above and, as such, is responsible for maintaining said compiler(s)
in conformance to ANSI/MIL-STD-1815A. All certificates and registrations
for Ada language compiler(s) listed in this declaration shall be made only
in the owner's corporate name.

Date:- 2 7,

John M roSpecial Programs

Owner' s Deolaration

I, the undersigned, representing Silicon Graphics, Inc., take full
responsibility for implementation and maintenance of the Ada compiler(s)
listed above, and agree to the public disclosure of the final Validation
Summary Report. I further agree to continue to comply with the Ada
trademark policy, as defined by the Ada Joint Program Office. I declare
that all of the Ada language compilers listed, and their host/target
performance are in compliance with the Ada Language Standard
ANSI/MIL-STD-1815A. I have reviewed the Validation Summary Report for the
compiler(s) and concur with the contents.

Date:_______________
Silicoq-raphis, Inc.I
John Yu" al Programs

®Ada is a registered trademark of the United States Government
(Ada Joint Program Office).

,S t. _J.. ,., % % % % ,", " , " * ,

APPENDIX B

APPENDIX F OF THE Ada SfANDARD

The only allowed implementation dependencies correspond to

implementation-dependent pragmas, to certain machine-dependent
conventions as mentioned in chapter 13 of MIL-STD-1815A, and to
certain allowed restrictions on representation classes. The
implementation-dependent characteristics of the SADS - Silicon

0 Graphics Ada Development System, Version 5.41, are described in
the following sections which discuss topics in Appendix F of the
Ada Language Reference Manual (ANSI/MIL-STD-1815A).
Implementation-specific portions of the package STANDARD are also

P included in this appendix.

package STANDARD is

type INTEGER is range -2_147_-483_648 .. 2_1J47_T483_-647;
type SHORTINTEGER is range -32_768 .. 32767;
type TINYINTEGER is range -128:-.. 127;

type FLOAT is digits 15 range

-20. 11 1fEl24

type SHORT -FLOAT is digits 6 range
-2#0.111111111111111111111 1111E127

type DURATION is delta 2#1.0#E-14 range

-2100000000000000000.0# 01
2#11111111111111111.*11111111111111#;

end STANDARD;

013-

*5°

'_V

APPENDIX F OF THE Ada STANDARD

"4

B. 1 IMPLEMENTATION-DEPENDENT PRAGMAS

B.1.1 SHAREBODY Pragma

The SHARE BODY pragma takes the name of a generic instantiation
-' or a generic unit as the first argument and one of the

identifiers TRUE or FALSE as the second argument. This pragma is
only allowed at the pla,,e of a declarative item in a declarative
par. ;r package specification, or after a library unit in a

*[compilatior, but before any subsequent compilation unit.

When the Lirst argument is a generic unit, the praga applies to
. all instantiations of that generic. When the first argument is

the name of :eneric instantiation, the pragma applies only to
the specified instantiation, or overloaded instantiations.

If the second argument is TRUE, the compiler will try to share
code generated for a generic instantiation with code for other
instantiations of the same generic. When the second argument is
FALSE, each instantiation will get a unique copy of the generated
code. The extent to which code is shared between instantiations
depends on this pragma and the kind of generic formal parameters
declared for the generic unit.

B.I.2 EXTERNALNAME Pragma

Tne EXTERNAL NAME pragma takes the name of a subprogram or
-? variable defined in Ada and allows the user to specify a

different external name that may be used to reference the entity
from other languages. The pragma is allowed at the place of a
declarative item in a package specification and must apply to an
object declared earlier in the same package specification.

* B.1.3 INTERFACEOBJECT PragmaI

The INTERFACEOBJECT pragma takes the name of a variable defined
in another language and allows it to be referenced directly in
Ada. The pragma will replace all occurrences of the variable
name with an external reference to the second, linkargument.
The pragma is allowed at the place of a declarative item in a
package specification and must apply to an object declared
earlier in the same package specification. The object must be
declared as a scalar or an access type. The object cannot be any
of the following:

a loop variable,
a constant,
an initialized variable,
an array, or
a record.

B-2

d'. 41Je~

APPENDIX F OF THE Ada STANDARD

B.1.4 IMPLICITCODE Pragma

Takes one of the identifiers ON or OFF as the single argument.
This pragma is only allowed within a machine code procedure. It

specifies that implicit code generated by the compiler be allowed
" or disallowed. A warning is issued if OFF is used and any

implicit code needs to be generated. The default is ON.

B.2 IMPLEMENTATION OF PREDEFINED PRAGMAS

B.2.1 CONTROLLED

This pragma is recognized by the implementation but has no
effect.

B.2.2 ELABORATE

*/ This pragma is implemented as described in Appendix B of the Ada
RM.

t.

B.2.3 INLINE

This pragma is implemented as described in Appendix B of the Ada
RM.

B.2.4 INTERFACE

This praga supports calls to 'C' and FORTRAN functions. The Ada

subprograms can be either functions or procedures. The types of
parameters and the result type for functions must be scalar,

* access, or the predefined type ADDRESS in SYSTEM. An optional
third argument overrides the default link name. All parameters
must have mode IN. Record and array objects can be passed by
reference using the ADDRESS attribute.

. 9

B.2.5 LIST

This pragma is implemented as described in Appendix B of the Ada
RM.

B-3

04

APPENDIX F OF THE Ada STANDARD

'4B.2.6 MEMORYSIZE

This pragma is recognized by the implementation. The
implementation does not allow SYSTEM to be modified by means of
pragmas; the SYSTEM package must be recompiled.

B.2.7 OPTIMIZE

This pragma is recognized by the implementation but has no
Affect.

B.2.8 PACK

This pragma will cause the compiler to choose a nonaligned
representation for composite types. It will not cause objects to
be packed at the bit level.0

B.2.9 PAGE

This pragma is implemented as described in Appendix B of the Ada
RM.

S"

S.

B.2.10 PRIORITY

This pragma is implemented as described in Appendix B of the Ada
RM.

"". B.2.11 SHARED

This pragma is recognized by the implementation but has no
Aeffect.

9., B.2.12 STORAGEUNIT

" This pragma is recognized by the implementation. The
implementation does not allow SYSTEM to be modified by means of

V? pragmas; the SYSTEM package must be recompiled.

B-

B-~4

01

APPENDIX F OF THE Ada STANDARD

B.2.13 SUPPRESS

This pragma is implemented as described, except that RANGECHECK
and DIVISIONCHECK cannot be suppressed.

B.2.14 SYSTEMNAME

This pragma is recognized by the implementation. The
implementation does not allow SYSTEM to be modified by means of
pragmas; the SYSTEM package must be recompiled.

B.3 IMPLEMENTATION-DEPENDENT ATTRIBUTES

B.3.1 P'REF

For a prefix that denotes an object, a program unit, a label, or
an entry:

This attribute denotes the effective address of the first of the

storage units allocated to P. For a subprogram, package, task
unit, or label, it refers to the address of the machine code
associated with the corresponding body or statement. For an
entry for which an address clause has been given, it refers to
the corresponding hardware interrupt. The attribute is of the4 type OPERAND defined in the package MACHINE CODE. The attribute
is only allowed within a machine code procedure.

See section F.4.8 for more information on the use of this
attribute.

(For a package, task unit, or entry, the 'REF attribute is not
9.. supported.)

B.4 SPECIFICATION OF PACKAGE SYSTEM

package SYSTEM is
type NAME is (sgi..unix);
SYSTEM NAME : constant NAME := sgi_unix;
STORAGE UNIT : constant :- 8;
MEMORY_SIZE : constant :: 16_777_216;

-- System-Dependent Named Numbers

MIN INT : constant :: -2 147 483_647 - 1;
MAX-INT : constant = 2_147183_647
MAXDIGITS : constant 1:: 15;
MAX MANTISSA : constant :: 31;

B-5

APPENDIX F OF THE Ada STANDARD

FINE DELTA : constant := 2.0 ** (-30);
TICK : constant "- 0.01;

-- Other System-Dependent Declarations

subtype PRIORITY is Integer range 0 .. 99;

MAXRECSIZE : Integer := 64 * 1024;

type ADDRESS is private;

NOADDR : constant ADDRESS;

function ?HYSICAL ADDRESS (I : Integer) return ADDRESS;
function ADDRGT C A, B : ADDRESS) return Boolean;
function ADDRLT (A, B : ADDRESS) return Boolean;
function ADDR GE C A, B • ADDRESS) return Boolean;
function ADDRLE C A, B : ADDRESS) return Boolean;
function ADDRDIFF (A, B : ADDRESS) return Integer;

A function INCRADDR (A : ADDRESS; INCR : Integer) return ADDRESS;
4 function DECR-ADDR (A : ADDRESS; DECR : Integer) return ADDRESS;

function ">" (A, B : ADDRESS) return Boolean renames ADDRGT;
function "<" (A, B : ADDRESS) return Boolean renames ADDRLT;
function ">=" (A, B : ADDRESS) return Boolean renames ADDRGE;
function "<=" (A, B : ADDRESS) return Boolean renames ADDRLE;
function "-" (A, B : ADDRESS) return Integer renames ADDRDIFF;
function "+" (A : ADDRESS; INCR : Integer) return ADDRESS

renames INCRADDR;
function "-" C A : ADDRESS; DECR : Integer) return ADDRESS

renames DECRADDR;

pragma Inline (ADDRGT);
pragma Inline (ADDRLT);
pragma Inline (ADDR_GE);
pragma Inline (ADDRLE);
pragma Inline (ADDRDIFF);
pragma Inline CINCHADDR);

epragma Inline (DECRADDR);
pragma Inline (PHYSICALADDRESS);

private

type ADDRESS is new Integer;
I

NOADDR : constant ADDRESS := 0;

end SYSTEM;

B-6

APPENDIX F OF THE Ada STANDARD

B.5 RESTRICTIONS ON REPRESENTATION CLAUSES

B.5.1 Pragma PACK

Array and record components that are smaller than a STORAGEUNIT
are packed into a number of bits that is a power of two. Objectsand larger components are packed to the nearest whole

STORAGEUNIT.

B.5.2 Size Specification

The size specification T'SMALL is not supported except when the
representation specification is the same as the value 'SMALL for
the base type.

B.5.3 Record Representation Clauses

Component not aligned on even STORAGEUNIT boundaries may not
span more than four STORAGEUNITS.

B.5.4 Address Clauses

Address clauses are supported for variables and constants.

B.5.5 Interrupts

Interrupt entries are supported for UNIX signals. The Ada FOR
clause gives the UNIX signal number.

B.5.6 Representation Attributes

The ADDRESS attribute is not supported for the following
entities:

Packages
Tasks
Labels
Entries

B.5.7 Machine Code Insertions

Machine code insertions are supported.

B-7

APPENDIX F OF THE Ada STANDARD

The general definition of the package MACHINE_.CODE provides an
assembly language interface for the target machine. It provides
the necessary record type(s) needed in the code statement, an
enumeration type of all the opcoded mnemonics, a set of register
definitions, and a set of addressing mode functions.

The general syntax of a machine code statement is as follows:

CCDE_n'(opcode, .,perand f, operand));

where n indicates the number of operands in the aggregate.

A sp ial case arises for a variable number of operands. The

operands are listed within a subaggregate. The format is as
follows:

CODE_N'(opcode, (operand {, operand}));

For those opcodes that require no operands, named notation must
be used (cf. RM 4.3(4)).

CODE_0'(OP => opcode);

The opcode must be an enumeration literal (i.e., it cannot be an
object, attribute, or a rename).

An operand can only be an entity defined in MACHINE_CODE or the
'REF attribute.

The arguments to any of the functions defined in MACHINE CODE
must be static expressions, string literals, or the functions
defined in MACHINE CODE. The 'REF attribute may not be used as
an argument in any of these functions.

Inline expansion of machine code procedures is supported.

*B.6 CONVENTIONS FOR IMPLEMENTATION-GENERATED NAMES

There are no implementation-generated names.

B.7 INTERPRETATION OF EXPRESSIONS IN ADDRESS CLAUSES

Address clauses are supported for constants and variables.

Interrupt entries are specified with the number of the UNIX
signal.

B-8

11 5 1 1 1 1 1, 0 1

APPENDIX F OF THE Ada STANDARD

B.8 RESTRICTIONS ON UNCHECKED CONVERSIONS

None.

B.9 RESTRICTIONS ON UNCHECKED DEALLOCATIONS

None.

B.10 IMPLEMENTATION CHARACTERISTICS OF INPUT-OUTPUT PACKAGES

Instantiations of DIRECTI0 use the value MAXECSIZE as the
record size (expressed in STORAGEUNITS) when the size of
ELEMENTTYPE exceeds that value. For example, for unconstrained
arrays such as String where ELEMENT TYPE'SIZE is very large,
MAX REC SIZE is used instead. MAX _EC fIZE is defined in SYSTEM
and-can-be changed by a program before-instantiating DIRECT_10 to
provide an upper limit on the record size. In any case the
maximum size supported is 1024 0 1024 * STORAGE UNIT bits.
DIRECTIO will raise USEERROR if MAXRECSIZE exceeds this
absolute limit.

Instantiations of SEQUENTIAL1 use the value MAXEC SIZE as the
record size (expressed in STORAGE UNITS) when the size of
ELEMENT-TYPE exceeds that value. For example, for unconstrained

*, arrays such as String where ELEMENTTYPE'SIZE is very large,
MAX REC SIZE is used instead. MAX REC SIZE is defined in SYSTEM
and can be changed by a program before instantiating
SEQUENTIAL 10 to provide an upper limit on the record size.
SEQUENTIAL_10 imposes no limit on MAXRECSIZE.

B.11 IMPLEMENTATION LIMITS

The following limits are actually enforced by the implementation.
It is not intended to imply that resources up to or even near
these limits are available to every program.

B.11.1 Line Length

The implementation supports a maximum line length of 500
characters including the end of line character.

B-9

APPENDIX F OF THE Ada STANDARD

B.11.2 Record And Array Sizes

The maximum size of a statically sized array type is 4 000 000
STORAGEUNITS. The maximum size of a statically sized record
type is 4_000000 * STORAGEUNITS. A record type or array type
declaration that exceeds these limits will generate a warning
message.

B.11.3 Default Stack Size For Tasks

In the absence of an explicit STORAGESIZE length specification
every task except the main program is allocated a fixed size
stack of 10 240 STORAGE UNITS. This is the value returned by
T'STORAGE_SIZE for a task type T.

,V

5,.

p'B.11.4 Default Collection Size

In the absence of an explicit STORAGESIZE length attribute the
default collection size for an access type is 100 000
STORAGEUNITS. This is the value returned by T'STORAGESIZE for
an acceis type T.

B.11.5 Limit On Declared Objects
There is an absolute limit of 6_000 000 * STORAGEUNITS for

objects declared statically within a-compilation unit. If this
value is exceeded the compiler will terminate the compilation of
the unit with a FATAL error message.

Oi B-10

pip-.~i 111!

APPENDIX C
.TEST PARAMETERS

Certain tests in the ACYC make use of implementation-dependent
values, such as the maximum length of an input line and invalid
file names. A test that makes use of such values is identified

by the extension .TST in its file name. Actual values to be
* substituted are represented by names that begin with a dollar

sign. A value must be substituted for each of these names before
the test is run. The values used for this validation are given
below.

Name and Meaning Value

$BIGIDI (I..498 => 'A', 499 => '1')
Identifier the size of the
maximum input line length with

*. varying last character.

$BIGID2 (1..498 => 'A', 499 => '2')
Identifier the size of the
maximum input line length with
varying last character.

$BIGID3 (..249 > 'A', 250 => '3', 251..499 => 'A')

Identifier the size of the
maximum input line length with
varying middle character.

$BIGID4 (l..249 => 'A', 250 => '4', 251..499 => 'A')

Identifier- the size of the
maximum input line length with
varying middle character.

$BIGINTLIT (1..496 :> '0', 497..499 > "298")
An integer literal of value 298
with enough leading zeroes so

that it is the size of the
maximum line length.

C-I
0

.TEST PARAMETERS

Name and Meaning Value

$BIGREALLIT (1..493 => '0', 494..499 => "69.OE1")
A real literal that can be
either of floating- or fixed-
point type, has value 690.0, and
has enough leading zeroes to be
the size of the maximum line
length.

$BLANKS (1..479 => ' ')
A sequence of blanks twenty
characters fewer than the size
of the maximum line length.

$COUNTLAST 2_147_483_647
A universal integer literal

A' whose value is TEXT IO.COUNT'LAST.

$EXTENDEDASCII_CHARS "abcdefghijklmnopqrstuvwxyz!$%?@[\] ' {}"
A string literal containing all
the ASCII characters with
printable graphics that are not

a. in the basic 55 Ada character
set.

$FIELDLAST 2_147_483_647
A universal integer literal
whose value is TEXTIO.FIELD'LAST.

-$ $FILENAME WITH BAD CHARS "/illegal/file name/2{]$%2102C.DAT"
An illegal- external file name
that either contains invalid
characters, or is too long if no
invalid characters exist.

$FILENAME WITH WILD CARD CHAR "/illegal/file name/CE2102C*.DAT"
An external fi-le name that

* either contains a wild card
character, or is too long if no
wild card character exists.

$GREATER THAN DURATION 100000.0
A universal real value that lies
between DURATION'BASE'LAST and
DURATION'LAST if any, otherwise
any value in the range of
DURATION.

$GREATERTHAN_DURATION.BASELAST -10_000_000.0
The universal real value that is
greater than DURATION'BASE'LAST,
if such a value exists.

C-2

TEST PARAMETERS

Name and Meaning Value

$ILLEGAL EXTERNAL FILE NAMEl "/no/such/directory/ILLEGALEXTERNALFILENAME
An illegal external file name.

$ILLEGAL EXTERNAL FILE NAME2 "/no/such/directoryILLEGALEXTERNALFILENAME
An illegal external file name
that is different from
$ILLEGALEXTERNALFILENAMEI.

$INTEGERFIRST -2_147_483_648
The universal integer literal
expresi ion whose value is
INTEGE R'FIRST.

$INTEGERLAST 2_147_483_647
The universal integer literal
expression whose value is
INTEGER'LAST.

$LESSTHANDURATION -100_000.0
A universal real value that lies
between DURATION'BASE'FIRST and
DURATION'FIRST if any, otherwise
any value in the range of
DURATION.

$LESSTHAN_DURATION BASEFIRST -10_000_000.0
The universal real value that is
less than DURATION'BASE'FIRST,
if such a value exists.

$MAX_DIGITS 15
The universal integer literal
whose value is the maximum
digits supported for
floating-point types.

$MAX IN LEN 499
The- universal integer literal
whose value is the maximum
input line length permitted by
the implementation.

$MAXINT 2_147_483_647
The universal integer literal
whose value is SYSTEM.MAX-INT.

C-3

TEST PARAMETERS

Name and Meaning Value

$NAME TINYINTEGER
A name of a predefined numeric
type other than FLOAT, INTEGER,
SHORT FLOAT, SHORTINTEGER,
LONGFLOAT, or LONG INTEGER
if one exists, mtherwise any
umdefined name.

$NEGBASEDINT 16#FFFFFFFD#
* A based integer literal whose

highest order nonzero bit
falls in the sign bit
position of the representation
for SYSTEM.MAXINT.

$NON ASCIICHAR_ TYPE (NONNULL)
An enumerated type definition
for a character type whose

literals are the identifier
NON NULL and all non-ASCII
characters with printable
graphics.

C-4

rww - J rJ n

e . APPENDIX D

'U. WITHDRAWN TESTS

Some tests are withdrawn from the ACVC because they do not conform to the Ada
Standard. The following 19 tests had been withdrawn at the time of validation
testing for the reasons indicated. A reference of the form "AI-ddddd" is to an
Ada Commentary.

. C32114A: An unterminated string literal occurs at line 62.

. B33203C: The reserved word "IS" is misspelled at line 45.

. C34018A: The call of function G at line 114 is ambiguous in the
presence of implicit conversions.

• C35904A: The elaboration of subtype declarations SFX3 and SFX4 may
-raise NUMERICERROR instead of CONSTRAINTERROR as expected in the

test.

. B37401A: The object declarations at lines 126 through 135 follow
p. subprogram bodies declared in the same declarative part.
p.-.

. C41404A: The values of 'LAST and 'LENGTH are incorrect in the if
statements from line 74 to the end of the test.

" B45116A: ARRPRIBL1 and ARRPRIBL2 are initialized with a value of the
wrong type--PRIBOOLTYPE instead of ARRPRIBOOLTYPE--at line 41.

. C48008A: The assumption that evaluation of default initial values
occurs when an exception is raised by an allocator is incorrect

. B49006A: Object declarations at lines 41 and 50 are terminated
incorrectly with colons, and end case; is missing from line 42.

" B4AO10C: The object declaration in line 18 follows a subprogram body
of the same declarative part.

D-1

WITHDRAWN TESTS

. B74101B: The begin at line 9 causes a declarative part to be treated
as a sequence of statements.

. C87B5OA: The call of "/=" at line 31 requires a use clause for package
A.

SC92005A: The "/-" for type PACK.BIGINT at line 40 is not visible
without a use clause for the pqckage PACK.

. C940ACA: The assumption that allocated task TT will run prior to the
main program, and thus assign SPYNUMB the value checked for by the main
program, is erroneous.

CA3005A..D (4 tests): No valid elaboration order exists for these
tests.

BC3204C: The body of BC3204C0 is missing.

.

* D-2

-P.@ 0 1,.,,. -'-.-,-0 1 , % '., ., ., 2,,. ,, , ,.

I-v

a,

V

,1%

,4!

:?P
11/

'pJT

-, 5r1

0" !

